Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6696): 697-703, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723080

RESUMEN

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Asunto(s)
Anopheles , Hidrología , Malaria , Mosquitos Vectores , Animales , Malaria/transmisión , África , Anopheles/parasitología , Mosquitos Vectores/parasitología , Cambio Climático , Humanos , Estaciones del Año , Lluvia , Modelos Teóricos , Agua , Gases de Efecto Invernadero/análisis
2.
Int J Biometeorol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526600

RESUMEN

This review examines high-quality research evidence that synthesises the effects of extreme heat on human health in tropical Africa. Web of Science (WoS) was used to identify research articles on the effects extreme heat, humidity, Wet-bulb Globe Temperature (WBGT), apparent temperature, wind, Heat Index, Humidex, Universal Thermal Climate Index (UTCI), heatwave, high temperature and hot climate on human health, human comfort, heat stress, heat rashes, and heat-related morbidity and mortality. A total of 5, 735 articles were initially identified, which were reduced to 100 based on a set of inclusion and exclusion criteria. The review discovered that temperatures up to 60°C have been recorded in the region and that extreme heat has many adverse effects on human health, such as worsening mental health in low-income adults, increasing the likelihood of miscarriage, and adverse effects on well-being and safety, psychological behaviour, efficiency, and social comfort of outdoor workers who spend long hours performing manual labour. Extreme heat raises the risk of death from heat-related disease, necessitating preventative measures such as adaptation methods to mitigate the adverse effects on vulnerable populations during hot weather. This study highlights the social inequalities in heat exposure and adverse health outcomes.

3.
Br Ir Orthopt J ; 20(1): 57-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38274242

RESUMEN

Introduction: Electronic head-mounted low vision aids (LVAs) can help children and young people (CYP) to access schoolwork and leisure activities which they would otherwise struggle to be able to do with traditional optical or hand held LVAs. SightPlus uses a smartphone mounted in a virtual reality headset controlled using a Bluetooth joystick. It offers users 0.7-24.3× magnification alongside enhanced modes to maximise vision. Methods: Eighteen participants aged 8-16 years with reduced vision were given SightPlus to use at home for four weeks. Visual acuity was assessed with and without SightPlus along with reading performance, contrast sensitivity, functional vision and quality of life questionnaires. Results: Clinically significant improvements in distance vision (0.633logMAR SD ± 0.359), near vision (0.411logMAR SD ± 0.368), reading acuity (0.454LlogMAR SD ± 0.406) and critical print size (0.285logMAR ± 0.360) were seen when testing with SightPlus.However, there was a mean decrease in contrast sensitivity and reading speed when using SightPlus. Despite this, nine out of the 14 patients included for analysis indicated a preference to continue to use SightPlus. Of note, younger participants were more likely to show a preference for using SightPlus. All seven CYP aged 10 or under wanted to continue to use SightPlus; in contrast, only two of the seven participants aged 11 or over wanted to continue. Conclusions: Like the results in adult populations, SightPlus has been found to improve CYP visual functions. Older participants were less likely to want to continue to use SightPlus, potentially suggesting they have found other methods for managing sight loss.

4.
Nat Commun ; 13(1): 3287, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764606

RESUMEN

Droughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.


Asunto(s)
Sequías , Gases de Efecto Invernadero , Cambio Climático , Hidrología , Recursos Hídricos
6.
Lancet Planet Health ; 5(7): e455-e465, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34245716

RESUMEN

BACKGROUND: Although effects on labour is one of the most tangible and attributable climate impact, our quantification of these effects is insufficient and based on weak methodologies. Partly, this gap is due to the inability to resolve different impact channels, such as changes in time allocation (labour supply) and slowdown of work (labour productivity). Explicitly resolving those in a multi-model inter-comparison framework can help to improve estimates of the effects of climate change on labour effectiveness. METHODS: In this empirical, multi-model study, we used a large collection of micro-survey data aggregated to subnational regions across the world to estimate new, robust global and regional temperature and wet-bulb globe temperature exposure-response functions (ERFs) for labour supply. We then assessed the uncertainty in existing labour productivity response functions and derived an augmented mean function. Finally, we combined these two dimensions of labour into a single compound metric (effective labour effects). This combined measure allowed us to estimate the effect of future climate change on both the number of hours worked and on the productivity of workers during their working hours under 1·5°C, 2·0°C, and 3·0°C of global warming. We separately analysed low-exposure (indoors or outdoors in the shade) and high-exposure (outdoor in the sun) sectors. FINDINGS: We found differentiated empirical regional and sectoral ERF's for labour supply. Current climate conditions already negatively affect labour effectiveness, particularly in tropical countries. Future climate change will reduce global total labour in the low-exposure sectors by 18 percentage points (range -48·8 to 5·3) under a scenario of 3·0°C warming (24·8 percentage points in the high-exposure sectors). The reductions will be 25·9 percentage points (-48·8 to 2·7) in Africa, 18·6 percentage points (-33·6 to 5·3) in Asia, and 10·4 percentage points (-35·0 to 2·6) in the Americas in the low-exposure sectors. These regional effects are projected to be substantially higher for labour outdoors in full sunlight compared with indoors (or outdoors in the shade) with the average reductions in total labour projected to be 32·8 percentage points (-66·3 to 1·6) in Africa, 25·0 percentage points (-66·3 to 7·0) in Asia, and 16·7 percentage points (-45·5 to 4·4) in the Americas. INTERPRETATION: Both labour supply and productivity are projected to decrease under future climate change in most parts of the world, and particularly in tropical regions. Parts of sub-Saharan Africa, south Asia, and southeast Asia are at highest risk under future warming scenarios. The heterogeneous regional response functions suggest that it is necessary to move away from one-size-fits-all response functions to investigate the climate effect on labour. Our findings imply income and distributional consequences in terms of increased inequality and poverty, especially in low-income countries, where the labour effects are projected to be high. FUNDING: COST (European Cooperation in Science and Technology).


Asunto(s)
Cambio Climático , Eficiencia , Predicción , Calentamiento Global , Humanos , Temperatura
8.
Science ; 371(6534): 1159-1162, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33707264

RESUMEN

Anthropogenic climate change is expected to affect global river flow. Here, we analyze time series of low, mean, and high river flows from 7250 observatories around the world covering the years 1971 to 2010. We identify spatially complex trend patterns, where some regions are drying and others are wetting consistently across low, mean, and high flows. Trends computed from state-of-the-art model simulations are consistent with the observations only if radiative forcing that accounts for anthropogenic climate change is considered. Simulated effects of water and land management do not suffice to reproduce the observed trend pattern. Thus, the analysis provides clear evidence for the role of externally forced climate change as a causal driver of recent trends in mean and extreme river flow at the global scale.

9.
Nat Commun ; 10(1): 1005, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824763

RESUMEN

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

10.
Philos Trans A Math Phys Eng Sci ; 376(2121)2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29712793

RESUMEN

Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'.

11.
Int J Biometeorol ; 62(1): 1-2, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29270872
12.
Environ Health Perspect ; 125(8): 087008, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28885979

RESUMEN

BACKGROUND: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. OBJECTIVES: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. METHODS: We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. RESULTS: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. CONCLUSIONS: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.


Asunto(s)
Aclimatación/fisiología , Cambio Climático , Calor , Mortalidad/tendencias , Adaptación Fisiológica , Ciudades , Predicción , Humanos , Modelos Teóricos
13.
Int J Biometeorol ; 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914363
14.
Environ Res Lett ; 12(5)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-30377438

RESUMEN

We performed a twofold intercomparison of river discharge regulated by dams under multiple meteorological forcings among multiple global hydrological models for a historical period by simulation. Paper II provides an intercomparison of river discharge simulated by five hydrological models under four meteorological forcings. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri-Mississippi and Green- Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river's course to critically examine the performance of hydrological models because the performance can vary with the locations.

15.
Earths Future ; 5(6): 545-559, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30377623

RESUMEN

Water scarcity has become a major constraint to socio-economic development and a threat to livelihood in increasing parts of the world. Since the late 1980s, water scarcity research has attracted much political and public attention. We here review a variety of indicators that have been developed to capture different characteristics of water scarcity. Population, water availability and water use are the key elements of these indicators. Most of the progress made in the last few decades has been on the quantification of water availability and use by applying spatially explicit models. However, challenges remain on appropriate incorporation of green water (soil moisture), water quality, environmental flow requirements, globalization and virtual water trade in water scarcity assessment. Meanwhile, inter- and intra- annual variability of water availability and use also calls for assessing the temporal dimension of water scarcity. It requires concerted efforts of hydrologists, economists, social scientists, and environmental scientists to develop integrated approaches to capture the multi-faceted nature of water scarcity.

16.
Environ Res Lett ; 12(2)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32704305

RESUMEN

Human impacts increasingly affect the global hydrological cycle and indeed dominate hydrological changes in some regions. Hydrologists have sought to identify the human-impact-induced hydrological variations via parameterizing anthropogenic water uses in global hydrological models (GHMs). The consequently increased model complexity is likely to introduce additional uncertainty among GHMs. Here, using four GHMs, between-model uncertainties are quantified in terms of the ratio of signal to noise (SNR) for average river flow during 1971-2000 simulated in two experiments, with representation of human impacts (VARSOC) and without (NOSOC). It is the first quantitative investigation of between-model uncertainty resulted from the inclusion of human impact parameterizations. Results show that the between-model uncertainties in terms of SNRs in the VARSOC annual flow are larger (about 2% for global and varied magnitude for different basins) than those in the NOSOC, which are particularly significant in most areas of Asia and northern areas to the Mediterranean Sea. The SNR differences are mostly negative (-20% to 5%, indicating higher uncertainty) for basin-averaged annual flow. The VARSOC high flow shows slightly lower uncertainties than NOSOC simulations, with SNR differences mostly ranging from -20% to 20%. The uncertainty differences between the two experiments are significantly related to the fraction of irrigation areas of basins. The large additional uncertainties in VARSOC simulations introduced by the inclusion of parameterizations of human impacts raise the urgent need of GHMs development regarding a better understanding of human impacts. Differences in the parameterizations of irrigation, reservoir regulation and water withdrawals are discussed towards potential directions of improvements for future GHM development. We also discuss the advantages of statistical approaches to reduce the between-model uncertainties, and the importance of calibration of GHMs for not only better performances of historical simulations but also more robust and confidential future projections of hydrological changes under a changing environment.

17.
Int J Biometeorol ; 58(2): 277-308, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550042

RESUMEN

Here we present, for the first time, a glossary of biometeorological terms. The glossary aims to address the need for a reliable source of biometeorological definitions, thereby facilitating communication and mutual understanding in this rapidly expanding field. A total of 171 terms are defined, with reference to 234 citations. It is anticipated that the glossary will be revisited in coming years, updating terms and adding new terms, as appropriate. The glossary is intended to provide a useful resource to the biometeorology community, and to this end, readers are encouraged to contact the lead author to suggest additional terms for inclusion in later versions of the glossary as a result of new and emerging developments in the field.


Asunto(s)
Meteorología/clasificación , Terminología como Asunto , Vocabulario Controlado
19.
Proc Natl Acad Sci U S A ; 111(9): 3262-7, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344266

RESUMEN

Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.


Asunto(s)
Cambio Climático , Sequías/estadística & datos numéricos , Hidrodinámica , Modelos Teóricos , Simulación por Computador , Predicción , Geografía , Incertidumbre
20.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344270

RESUMEN

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Política Pública , Agricultura/estadística & datos numéricos , Simulación por Computador , Ecosistema , Geografía , Calentamiento Global/economía , Humanos , Malaria/epidemiología , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...